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Abstract

In this paper we focus our attention on physical parameters of so-called envelope
solitary waves beneath an ice cover. The form and propagation of waves in water
basins under the ice cover are described by the 2D Euler equations. The ice cover
is modeled by an elastic Kirchhoff-Love plate and is assumed to be of considerable
thickness so that the inertia of the plate is taken into account in the formulation
of the model. The Euler equations involve the additional pressure from the plate
that freely floats at the surface of the fluid. We consider both the self-focusing case,
when envelope solitary waves exist, for which the envelope speed (group speed) is
equal to the velocity of filling (phase velocity) and the defocusing case, when they are
replaced by so-called dark solitons. The indicated families of waves are parameterized
by the velocity of the waves, and their existence is proved earlier for velocities lying
in some neighbourhood of the critical value corresponding to the quiescent state.
The waves, in turn, bifurcate from the quiescent state and lie in some neighbourhood
of it. Analysing the critical parameters for above mentioned waves we determine
characteristic values of the length and velocity of the wave. These physical parameters
can be compared with possible observations detecting such waves in practice.

1 INTRODUCTION

Both envelope solitary waves and dark solitons correspond to solutions of traveling wave
type of the full 2D Euler equations of an ideal incompressible fluid in the presence of the
ice cover. Geometrically nonlinear model of the ice based on Kirchhoff-Love plate theory
was first used in [1, 2] for a certain periodic flexural-gravity wave problem. Combination
of the normal form theory described in [3] with the centre manifold reduction in the spirit
of [4] and [5] for water-ice problem where the ice cover was modelled by Kirchhoff-Love’s
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plate under initial stress for the water of finite depth has been adopted in [6]. The method
described in [6] was generalized to the case of a moving load on the ice cover in [7]. The
resulting wave structures were compared with numerical solutions. The forced problem of
waves on the surface of the fluid of infinite depth under the Kirchhoff-Love elastic plate
was studied in [8] with asymptotic and numerical methods. It was shown, in particular,
that envelope solitary waves exist only at finite amplitude. Further results on periodic
waves, generalized solitary waves and three dimensional waves due to a steadily moving
load were obtained in [9, 10]. The possible bifurcations from the quiescent state, when
inertia of the Kirchhoff-Love ice plate was taken into consideration was discussed in [11].
It was shown in [6, 7] that for the fluid of finite depth the focusing region was replaced
by the defocusing one, namely envelope solitary waves bifurcating from the minimal speed
of dispersion relation are replaced by dark solitons, which occurs due to the fact that
the coefficient at the leading nonlinearity in the governing equation changes sign. Some
examples of the critical depth depending on the ice thickness for free waves were given
in [12]. The case when the Kirchhoff-Love ice plate is subjected to the compression was
discussed in [13].

For longitudinal strains and stresses in the model of Kirchhoff-Love plate the terms
of order O(h2/R2

m), where h is the plate thickness and Rm is the curvature radius of the
neutral plane of the plate are neglected (see, e. g. [6]). Therefore, the resulting elastic
energy of Kirchhoff-Love plate has the corresponding order in h/Rm and the total energy
(fluid plus ice) is conserved to a certain order in h/Rm, but is not conserved exactly. In
[14] a nonlinear formulation based on the special Cosserat theory theory for hyperelastic
shells was proposed which possesses the elastic energy corresponding to exactly conserved
total energy. However, experiments show that under natural conditions the ice cover quite
often behaves like a thin elastic plate [15].

In [16] the 2D problem of traveling waves propagating at the water-ice interface in the
ideal fluid of infinite depth was concerned. The ice cover was modelled as a Cosserat shell
via formulation of [14]. In particular, it was shown that no envelope solitary waves exist
for small amplitude waves, for larger amplitudes both forced and free steady waves were
computed by direct numerical simulations. Branches of two dimensional flexural-gravity
waves of finite amplitude via the Cosserat framework were computed numerically in [17].
In [18] the same formulation is presented for the fluid layer of finite depth. As in [6, 7]
for Kirchhoff-Love’s plate it was shown that there is a critical depth below which the
nonlinear Shrödinger equation asymptotically describing waves of small amplitude is of
the focusing type and hence admits envelope solitary wave solutions. It was also observed
numerically that envelope solitary waves of arbitrary amplitude are stable once they are
waves of depression. Solitary, envelope solitary and generalized solitary waves of a two fluid
problem either when the Cosserat elastic shell is on the top of the first layer or between two
fluids were computed in [19, 20]. The work [21] is concerned with flexural-gravity solitary
waves on water of finite depth where the elastic sheet is modelled basing on the Cosserat
theory of hyperelastic shells. Both steady and unsteady waves are computed numerically
for the full Euler equations by using a conformal mapping technique. Solitary flexural-
gravity waves in three dimensions are discussed in [22]. Experimental data concerning ice
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waves can be found in [23, 24, 25].
According to the experimental results of [15] the ice cover is modelled here with the

help of Kirchhoff-Love’s plate. We focus our attention on physical parameters of envelope
solitary waves beneath the ice cover. As it was mentioned, here for each value of ice
thickness there exist some critical values of water depth and velocity where envelope solitary
waves cease to exist, and they are replaced by dark solitons. Hence, there exist a finite
range of values of water depth (for fixed value of the ice cover thickness) where a family
of envelope solitary waves locally exist (this family may be continued with respect to the
wave amplitude). Analysing the form of the envelope solitary wave from this range and
the critical parameters for it we determine characteristic values of the length and velocity
of the wave in order to compare them with experimental data on detecting free envelope
solitary waves beneath the ice. For each value of the ice cover thickness, water depth and
initial pre-stress in the ice cover we find the corresponding values of wave length,
velocity and frequency.

The paper is organized as follows. In Sec. 2 we give the brief formulation of the
problem, in Sec. 3 we present the equations in the operator form for traveling waves,
their asymptotic form and describe bifurcations leading to their occurrence. In Sec. 4 we
briefly describe the centre manifold reduction and approximation of the flow in the centre
manifold by the equations in normal form. Sec. 5 is devoted to results of the paper. In
Sec. 6 we discuss the results.

2 Formulation

2.1 Model of the ice cover

The equation of the balance of forces acting from the plate to the fluid is reduced to the
form [6]:

p = p0 +
σ0h

Rm
− ∂2

xxM + ρsh
∂2η

∂t2
, M =

J

Rm
, J =

Eh3

12(1− ν2)
. (2.1)

The curvature of a middle surface which is identified with the plate after averaging pro-
cedure with respect to plate thickness is given by [1]:

1

Rm

= − ∂xxη

(1 + (∂xη)2)3/2 − h∂xxη/2
.

The notations for the dimensional physical values and fundamental constants are given in
Table 1.

2.2 Equations of the fluid-ice system

We study plane potential motions of the ideal incompressible fluid of finite depth with a
horizontal bottom.
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Symbol Value Dimension
p pressure in the fluid [ML−1T−2]
p0 atmospheric pressure [ML−1T−2]
ϕ velocity potential [L2T−1]

η surface deviation of the ice-fluid interface [L]

Rm radius of the middle surface of the plate [L]

x horizontal coordinate [L]

z vertical coordinate [L]

h ice thickness [L]

H fluid depth [L]

g gravity acceleration [LT−2]

k wave number [L−1]

ω frequency [T−1]

σ0 pre-stress in the plate [ML−1T−2]

E Young module [ML−1T−2]

ν Poisson coefficient [ ]

ρ fluid density [ML−3]

ρs ice density [ML−3]

Table 1: Notations of the dimensional physical values and fundamental constants.

The fluid occupies the domain

D = {x ∈ R; 0 < z < H + η(x)},

with the boundary

∂D = ∂D+ ∪ ∂D− = {x ∈ R; z = H + η(x) ∪ z = 0}.

The interface between the fluid and ice is given by the equation z = H + η(x), x ∈ R.
From (2.1) it follows that the Euler equations of the ideal incompressible fluid of finite

depth with a horizontal bottom in presence of the mentioned surface effects has the form
[6]

ϕxx + ϕzz = 0, (x, z) ∈ D,

ϕz = 0, (x, z) ∈ ∂D−,

ϕt +
1

2
(ϕ2

x + ϕ2
z) + gη − b̂κ̂1 +

J

ρ
κ̂2 + ĉηtt = 0, (x, z) ∈ ∂D+,

ηt + ηxϕx = ϕz, (x, z) ∈ ∂D+, (2.2)

where

b̂ =
hσ0

ρ
, ĉ = ρsh/ρ, κ̂1 =

ηxx
(1 + η2x)

3/2 − hηxx
, κ̂2 = ∂2

xx

ηxx
(1 + η2x)

3/2 − hηxx
.

4



The letter subscripts denote differentiation with respect to corresponding variables.
The dispersion relation for the system (2.2) has the form

ω2 =

[

k th(kH)

1 + ĉk th(kH)

]

[

g + b̂k2 +
J

ρ
k4
]

. (2.3)

It can be seen that for some parameter domains the dependence (2.3) is given by
the graph, such that the tangent line to it at k = 0 doesn’t intersect it any more
and bifurcation occurs from zero wave number. In this case we have ordinary
solitary waves in the weakly nonlinear limit given by Korteweg-de Vries (KdV)
solitons. For the certain parameter domain (to be specified below) we have
bifurcations at finite wave number – the place on the dispersion curve ω = ω(k)
where the line ω/k = V0 (V0 is the critical value of the wave velocity) is tangent
to it at the finite wave number k (the phase speed ω/k is equal to the group
speed dω/dk). In the latter case one has envelope solitary waves in the weakly
nonlinear limit given by nonlinear Schrödinger (NLS) solitons. The sketches of
graphs of the dependence (2.3) ω = ω(k) for these two cases is shown in Fig. 1.
Moreover, presumably we have in our model non-stationary envelope solitary
waves whose phase and group velocities are not equal (we do not consider them
here).

ω ω

a b
k k
✲ ✲

✻ ✻

Figure 1: Bifurcation from zero wave number leading to KdV-type solitary waves (a);
bifurcation at finite wave number leading to NLS-type solitary waves (b)

3 Traveling waves

Consider a traveling wave which propagates to the left with the velocity V along the x-
axis. In the coordinates moving with the speed V the components of the velocity vector of
particles v = (u, v)⊤ satisfy the following asymptotic conditions u → V , v → 0, x → ∞.

Make, further, the following scaling transformations:

(x, z) →
( x

H
,
z

H

)

, η → η

H
, v → v

V
.
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For these transformations D → Ω, ∂D± → ∂Ω±,

Ω = {x ∈ R; 0 < z < 1 + η(x)}, ∂Ω = ∂Ω+ ∪ ∂Ω− = {x ∈ R; z = 1 + η(x) ∪ z = 0}.

In new dimensionless variables (for them we use the previous notations) the Euler equations
(2.2) for traveling waves have the form

rotv = 0, div v = 0, (x, z) ∈ Ω;
1

2
|v|2 + λη − bκ1 + γκ2 + c(∂xxη − κ1) = const, (x, z) ∈ ∂Ω+;

∂xη u− v = 0, (x, z) ∈ ∂Ω+; (3.1)

v = 0, (x, z) ∈ ∂Ω−.

The constants λ, b, γ, c κ are determined by

λ = gH/V 2, b =
b̂

HV 2
− c, γ =

J

ρV 2H3
, c =

ĉ

H
, κ =

h

H
. (3.2)

The functions κj , j = 1, 2, are given by

κ1 =
∂xxη

(1 + (∂xη)2)3/2 − κ∂xxη
, κ2 = ∂2

xx

∂xxη

(1 + (∂xη)2)3/2 − κ∂xxη
.

It can be shown that Eqs. (3.1) can be written locally in the operator form

∂xu = A(λ)u+G(λ, c,u). (3.3)

where λ = (λ, b, γ)⊤, the vector function u is the unknown, A(λ) is the linear closed
unbounded operator acting in certain functional spaces, G(λ, c,u) is the nonlinearity, µ is
a small constant [11].

Bifurcations from the quiescent state giving rise to the appearance of non-
trivial bounded wave patters occur when eigenvalues of the operator A come
to the imaginary axis. This takes place in the following two cases (see Fig. 2)

• On the plane λ = λ0 = 1, b = b0 6= 1/3 and γ = γ0 ∈ R
+/0 in the λ, b, γ

parameter space. For λ > 1, β > 1/3 and γ > 0 we get, in particular, the interface
between the water and ice plate in the form of solitary wave of depression
(corresponds to the case shown in Fig. 1a); for λ < 1, b < 1/3 and γ > 0 we
get, in particular, the interface between the water and ice plate in the form of
generalized solitary wave of elevation with non-decaying periodic asymptotic
at infinity [6].

• In the neighborhood of the surface in the parameter (λ, b, γ) space, param-
eterized by {q, γ0}, where q is the dimensionless wave number q = kH (wave
length l = 2π/k) and given by

λ0 = γ0q
4 +

q coth q

2
+

q2 sinh−2 q

2
≡ f(γ0, q),

b0 = −2γ0q
2 +

coth q

2q
− sinh−2 q

2
≡ e(γ0, q), (3.4)

6



Figure 2: The surfaces λ = 1 and (3.4), where the bifurcation in the parameter (λ, b, γ)-
space occurs. Locations of the eigenvalues coming in pairs to the imaginary axis on these
surfaces are indicated by black circles on both sides of the surface (3.4) and over the plane
λ = 1, and by white circles under the plane λ = 1

the bifurcation from the quiscent state takes place leading to the appearance of envelope
solitary waves (corresponds to the case shown in Fig. 1b) or dark solitons [6].

The parameter of bifurcation |µ| ≪ 1 is chosen so that

λ = λ0 + µ. (3.5)

The bifurcation parameter is the wave velocity V . From (3.5) it follows that

V −2 = V −2
0 +

µ

gH

and

b = b0 + ω1µ, γ = γ0 + ω2µ, µ ≪ 1, ω1 =
hσ0

ρgH2
µ, ω2 =

J

ρgH4
. (3.6)

Further, we will consider (3.3) in a neighborhood of the surface (3.4), defined by (3.5),
(3.6). Denote

A = A(λ0), F(µ,u) = G(λ0 + µ, b0 +
hσ0

ρgH2
µ, γ0 +

J

ρgH4
µ, c,u).
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Then (3.3) can be rewritten as

u̇ = Au+ F(µ,u), A = A(λ0), F(0, 0) = 0, ∂uF(0, 0) = 0, (3.7)

where the upper dot denotes the differentiation with respect to the unbounded coordinate
x.

4 Centre manifold reduction and normal form ap-

proximation

Hereinafter we briefly indicate how Eqs. (3.1) written in the form (3.7) can be
solved to obtain the envelope solitary wave solutions. To do this we need to
complete the following three steps.
Step 1. Projection to the centre manifold. We project our system of partial
differential equations to the subspace of infinite dimensional phase space of
the system in question where the bounded small amplitude solutions of it live.
This subspace has the same dimension as the space spanned by the null eigen-
vectors of the operator A. Since the number of the null eigenvalues of A is
finite (in our case their number is four) the phase space of the resulting sys-
tem is finite dimensional (four dimensional) and we get the flow on the centre
manifold given by the ordinary differential equation of the fourth order. We
formulate the corresponding theorem (Theorem 1) in Subsec. 4.1
Step 2. Approximation by the normal form system. The flow on the centre man-
ifold, given by the reduced ordinary differential system of the fourth order is
approximated by the system in the normal form up to an arbitrary algebraic
order with respect to µ. The resulting normal form system appears to be inte-
grable (Theorem 2 below).
Step 3. Persistence of envelope solitary wave solutions. It can be proved that
there exist the envelope solitary wave solution to full system (3.1) [26]. More-
over, the envelope solitary wave solution to the cut-off normal form equations
approximates to the corresponding order the envelope solitary wave solution
to (3.1), when their amplitudes are small enough (Theorem 3 below).

4.1 Centre manifold reduction

In the case in question the following results are valid (see [11] and references therein).

Theorem 1 (about centre manifold, [5]). The manifold

Mµ =
{(

u0,h(µ,u0)
)

∈ X, ||u0|| < ε
}

, ε ≪ 1, u0 ∈ X0,

(|| · ||denotes a norm in X) is the invariant manifold of the dynamic system (3.7), contains
all small bounded solutions of this system and is called the centre manifold. The dimen-
sion of the space X0 is finite, that is equivalent to finiteness of number of the imaginary
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eigenvalues (with their multiplicity) of the operator A. The system of equations (3.7) after
projection on the space X0 and its complementary one in X (denoted further as X1) takes
the form

u̇0 = A0u0 + F0(µ,u0 + u1),

u̇1 = A1u1 + F1(µ,u0 + u1), (4.1)

where

u = (u0,u1)
⊤ ∈ X = X0 ×X1, A0 = A|X0

, A1 = A|X1∩D(A),

and Fj, j = 0, 1 are the projections of F on X0 and X1, correspondingly. Besides,
• h(0, 0) = ∂u0

h(0, 0) = 0;
• if R = R0 ⊕ R1, R0 : X0 → X0, R1 : X1 → X1 are linear isometries, such that

Fj(µ,R0u0,R1u1) = −RjFj(µ,u0,u1), AjRj = −RjAj, j = 0, 1, then h(µ,R0u0) =
R1h(µ,u0).

The assertions of Theorem 1 mean, that until the inequality ||u0|| < ε is valid, the
solution u = (u0,u1)

⊤ of (4.1) belongs to Mµ, i. e. u1 = h(µ,u0). Consequently, the set of
all small bounded solutions obeys the finite dimensional dynamic system of equations:

u̇0 = A0u0 + f0(µ,u0), f0(µ,u0) = F0(µ,u0 + h(µ,u0)). (4.2)

The equations (4.2) are called the reduced equations.

4.2 Normal form approximation

It can be shown, that for the case in question u0 =
(

A,B,A∗, B∗
)⊤

, and the following
theorem is valid.

Theorem 2 [26]. The reduced equations (4.2) are approximated by the system in the
normal form

∂xA = iqA+B + iAR
(

AA∗,
i

2
(AB∗ − A∗B)

)

,

∂xB = iqB + AQ
(

AA∗,
i

2
(AB∗ − A∗B)

)

+ iBR
(

AA∗,
i

2
(AB∗ − A∗B)

)

(4.3)

up to arbitrary algebraic order with respect to µ. Here R and Q are polynomials with real
coefficients:

R(µ, u,K0) = p1µ+ p2u+ p3K0 +O
(

(|µ|+ |u|+ |K0|)2
)

,

Q(µ, u,K0) = q1µ− q2u+ q3K0 +O
(

(|µ|+ |u|+ |K0|)2
)

.
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Under the action of the isometry R0, A → A∗, B → −B∗. The system of equations (4.3)
has two first integrals

K0 =
i

2
(AB∗ − A∗B), H0 = |B|2 − S(µ, |A|2, K0), S =

|A|2
∫

0

Q(µ, u,K0) du,

and, consequently, appears to be the integrable one.

It can be shown with the help of (4.3) [26] that the reduced system (4.2) has solitary
wave solutions with equal phase and group speeds; the interface deviation is given by [26]

η = 1± 2 tanh q

q2

√

2µq1
q2

cosh−1√µq1x cos qx+O(|µ|3/2), (4.4)

where the constants q1 and q2 depends on q. The constant q1 > 0 for all q, the constant q2
changes sign. If q2 > 0 (4.4) gives the envelope solitary wave for µ > 0 (see Fig. 3).

-20 0 20

1

1.05

η ✻

✲

x

Figure 3: Form of the interface between the water and the ice given by an envelope solitary
waves of depression (4.4) for H = 55 m, h = 1 m, σ0 = 105 Nm−1 and µ = 0.005; E=5×
109 N·m−2 and ν = 0.3, ρ = 1000 kg·m−3, g = 10 m·s−1

If q2 < 0, µ < 0 we get the so-called dark soliton

η = 1± 2tanh q

q2

√

µq1
q2

tanh

√

−µq1
2

x sin qx+O(|µ|3/2). (4.5)

The dark soliton is the nonlinear product of the periodic wave and the bore for q2 < 0,
µ < 0 (see Fig. 4).
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-20 0 20

1

1.05

η ✻

✲

x

Figure 4: Form of the interface between the water and the ice given by a dark soliton of
elevation (4.5) for H = 65 m, h = 1 m, σ0 = 105 Nm−1 and µ = −0.005. The other
parameters are as in Fig. 3

Because the function q2(q) changes the sign for finite q there exists critical depths
Hc where envelope solitary waves are replaced by dark solitons [12]. The solution (4.4)

corresponds to the vector-function ur
0s =

(

Ar
s, B

r
s , A

r∗
s , Br∗

s

)⊤
.

Theorem 3 [26]. There exists the family of envelope solitary waves u0s = (As, Bs, A
∗
s, B

∗
s )

⊤,
satisfying the reduced equations (4.2). Besides, the mentioned solutions of the reduced equa-
tions differ little from ur

0s, exactly :

|u0s − ur
0s| ≤ c̃µ exp(−χ

√

µ̃x),

where µ̃ = q1µ > 0, c̃ > 0 is some constant, and 0 < χ < 1.

5 Results

Usually inertia of the ice plate is small in comparison with that of the water layer and it
produces a weak effect on physical parameters of the phenomena (see, e. g. [12]). Therefore,
we put c and κ to zero. The constants q1 and q2 can be computed directly [27] and in this
case are given by the following expressions.

q1 =
1 + ω1q

2 + ω2q
4

(2b0q + 4γ0q3) coth q + 6γ0q2 + b0 − 1
> 0, (5.1)
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q2 = − r

16q4(λ0 − 1) cosh3 q

(

λ0 − 9λ0
2 + 16q2 − 12λ0 cosh 2q ++12λ0

2 cosh 2q +

+11λ0cosh 4q − 3λ0
2 cosh 4q + 14q sinh 2q + 16αq sinh 2q + 18λ̂q sh 2q −

−16αλ0q sinh 2q + q sinh 4q + 4αq sinh 4q − λ0q sinh 4q − 4αλ0q sinh 4q
)

,

r =
q4 coth q

λ0q cosh q − b0q3 cosh q − 3γ0q5 cosh q − λ0 sinh q − 3γ0q4 sinh q
,

α =
2(2 + cosh 2q)

−5− cosh 2q + 6q coth q − 18γ0 q3 sinh 2q
. (5.2)

From (3.2) and (3.4) one has

e(γ0, q)−
hσ0

ρgH2
f(γ0, q) = 0,

γ0 −
J

ρgH4
f(γ0, q) = 0. (5.3)

From (5.3) we have

γ0 =
(ρgH2 − hσ0q

2) coth q − q(ρgH2 + hσ0q
2) sinh−2 q

4ρgH2q3 + 2hσ0q5
, (5.4)

where q = q0 is a root of the equation

(3Jq4 − ρgH4 + hH2σ0q
2) cosh q + q(Jq4 + ρgH4 + hH2σ0q

2) sinh−1 q = 0. (5.5)

The case when the ice plate is subjected to the compression was discussed in [13].
Possible compression pre-stresses σ0 (admissible tensions) which provide the stability of
the quiescent states were computed there in dependence on the thickness of the ice plate.
In Table 2 we give the corresponding values of physical parameters for the initially stressed
ice plate. In the case of compression the value of σ0 is negative. The form of the envelope
solitary wave given by for σ0 = 105 N·m−2 is shown in Fig. 3

σ0 Nm−2 V0 m s−1 l = 2πH/q0 m q0 γ0 λ0 b0
106 17.44 132.01 2.6 0.009 1.81 0.066
105 16.12 123.95 2.8 0.011 2.12 0.007
0 15.95 122.59 2.82 0.011 2.15 0

−105 15.35 121.68 2.84 0.011 2.2 −0.007
−106 14.28 114.05 3.03 0.013 3.03 −0.09

Table 2: Dimensional pre-tension in ice cover, characteristic values of speed and length of
envelope solitary wave and non-dimensional parameters for H = 55 m and h = 1 m.

The constants q1 and q2 in (4.4) are given by (5.1) and (5.2) where γ0 is given by (5.4).
To establish the dependence of q2 on H the following steps have to be undertaken.

• First, (5.4), (3.4) and (3.5) have to be substituted in (5.1) and (5.2).
• Second, from (5.5) we obtain the dependence q(H) and substitute it in (5.2). The

example of the dependence q2(H) is illustrated by Fig. 5.
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50 59.3 70

1.5

3

q2 ✻

✲

H (m)

Figure 5: Dependence of q2 on H for σ0 = 105 N·m−2. The other physical constants are as
in Fig. 3

6 Conclusion and discussion

The result of the present research is an attempt to build bridges between theoretical pre-
dictions and results of measurements of waves characteristics beneath the ice, which are
made, in particular, at the Institute of Arctic and Antarctic in St. Petersburg, Russia. The
main aim of our investigation is to put in an explicit form the procedure of
computing physical parameters of the envelope solitary wave (the wave length,
wave velocity, etc.). Of course, envelope solitary waves on the water surface
under the ice cover have been studied in many papers, but, to our knowledge,
the general correspondence of their theoretical description to possible experi-
mental detection in the naturel water basins is evaluated for the first time in
this paper. For this purpose we use the theoretical expression for the enve-
lope solitary wave, that are known to exist in the model to be briefly specified
below.

For theoretical description we use the full 2D Euler equations. The Euler equations
involve the additional pressure from the plate that is freely floating at the surface of the
fluid. The ice cover is modeled by an elastic Kirchhoff-Love plate and is assumed to
be of considerable thickness so that the inertia of the plate is taken into account in the
formulation of the model. The plate itself is physically linear (Hooke’s law is valid), but
geometrically nonlinear. Consequently, we are able to treat finite (not small) displacements,
though we are restricted to small strains. We consider the self-focusing case, when due to
Theorem 3 envelope solitary waves exist , for which the envelope velocity (group velocity) is
equal to the velocity of filling (phase velocity). Analysing envelope solitary waves (q2 > 0,
µ > 0) for all possible values of parameters we are able to find theoretical values for
corresponding wave length and wave velocity. In particular, it is established that envelope
solitary waves are long waves propagating with a considerably high speed. The example of
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corresponding parameters for specific depth and ice thickness values are given in Table 2.
As follows from the results of the paper [18], where the ice sheet model is based on the
special Cosserat theory, the small- to large amplitude envelope solitary waves of depression
are stable. We assume that this is true also for the plate model of the ice sheet used here.
Therefore, in Fig. 3 we give the graph of the form of the wave of depression of the small
amplitude.

The self-focusing takes place for the water depths H < Hc(h), the coefficient at the
leading nonlinearity q2(Hc) = 0 and changes in this point its sign for any given ice thickness
h. When H > Hc(h) the envelope solitary wave is replaced by the dark soliton, which is
the indicator of modulational stability [12]. It can be seen from Fig. 5 that for physically
reliable initial tensions σ0 = 105 N m−2 and the ice thickness h = 1 m the critical value
Hc ≈ 59.3 meters.

For the case of small amplitudes (small µ, though dimensional values can reach several
tens of centimeters) treated here the typical values of parameters (wave velocity and wave
length) are evidently close to those given by Table 2 (in case of the corresponding water
depth and ice thickness). Due to high value of the Young module of the ice it is not visible
how the waves of large amplitude can appear in practice. Therefore, it is natural to compare
theoretical values of the wave velocity and length of envelope solitary waves evaluated here
with those given by natural observations of these wave structures in natural basins. The
detection of envelope solitary waves under the ice cover may be based on corresponding
measurements of their velocity. Then, one can measure the wave amplitude and,
therefore, compute the parameter µ, corresponding to an experimental value of the wave
amplitude. Next, we compare theoretical and experimental values of the wave length. A
follows from (4.4) the length of the envelope depends on µ and the length of the filling
is given by the dimensionless wave number q, which for given parameters H , h and σ0 is
determined from (5.5).
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[10] E. Părău, J.-M. Vanden-Broeck, Three dimensional waves beneath an ice sheet due
to a steadily moving pressure, Phil. Trans. R. Soc. Lond. 2011. A369. 2973–2988.

[11] A.T. Il’ichev, Soliton-like structures on a water-ice interface, Russian Math. Surveys.
2015. 70. 1051-1103.

[12] A.T. Il’ichev, Envelope solitary waves and dark solitons at a water-ice interface, Proc.
Steklov Inst. Math. 2015. 289. 152-166.

[13] A. T. Il’ichev, Solitary wave packets beneath a compressed ice cover, Fluid Dyn. 2016.
51. 327-337.

[14] P.I.Plotnikov, J.F.Toland, Modelling nonlinear hydroelastic waves, Phil. Trans.the R.
Soc. A. 2011. 369. 2942-2956.

[15] A. Müller, R. Ettema, Dynamic response of an icebreaker hull to ice breaking, Pro-
ceedings of the 7th IAHR International Symposium on Ice. 1984. II. Hamburg, W.
Germany. 287-296.
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